Control of electron transfer in nitrogenase
نویسندگان
چکیده
منابع مشابه
Electron Transfer and Substrate Reduction in Nitrogenase
.....................................................................................................53 Introduction ................................................................................................54 Materials and Methods ...............................................................................58 Results ........................................................................
متن کاملElectron transfer and half-reactivity in nitrogenase.
Nitrogenase is a globally important enzyme that catalyses the reduction of atmospheric dinitrogen into ammonia and is thus an important part of the nitrogen cycle. The nitrogenase enzyme is composed of a catalytic molybdenum-iron protein (MoFe protein) and a protein containing an [Fe4-S4] cluster (Fe protein) that functions as a dedicated ATP-dependent reductase. The current understanding of el...
متن کاملElectron transfer precedes ATP hydrolysis during nitrogenase catalysis.
The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ...
متن کاملElectron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
Nitrogenase-catalyzed substrate reduction reactions require electron transfer between two component proteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein, in a reaction that is coupled to the hydrolysis of MgATP. In the present work, electron transfer (Marcus) theory has been applied to nitrogenase electron transfer reactions to gain insights into possible roles for MgATP in th...
متن کاملElectron Transfer Control in Soluble Methane Monooxygenase
The hydroxylation or epoxidation of hydrocarbons by bacterial multicomponent monooxygenases (BMMs) requires the interplay of three or four protein components. How component protein interactions control catalysis, however, is not well understood. In particular, the binding sites of the reductase components on the surface of their cognate hydroxylases and the role(s) that the regulatory proteins ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Chemical Biology
سال: 2018
ISSN: 1367-5931
DOI: 10.1016/j.cbpa.2018.08.011